PARTIAL PROXIMAL METHOD OF MULTIPLIERS FOR CONVEX PROGRAMMING PROBLEMS
نویسندگان
چکیده
منابع مشابه
Linearized Alternating Direction Method of Multipliers via Positive-Indefinite Proximal Regularization for Convex Programming
The alternating direction method of multipliers (ADMM) is being widely used for various convex minimization models with separable structures arising in a variety of areas. In the literature, the proximal version of ADMM which allows ADMM’s subproblems to be proximally regularized has been well studied. Particularly the linearized version of ADMM can be yielded when the proximal terms are approp...
متن کاملPartial Proximal Minimization Algorithms for Convex Programming * Dimitri
An extension of the proximal minimization algorithm is considered where only some of the minimization variables appear in the quadratic proximal term. The resulting iterates are interpreted in terms of the iterates of the standard algorithm, and a uniform descent property is shown that holds independently of the proximal terms used. This property is used to give simple convergence proofs of par...
متن کاملConvergence Results on Proximal Method of Multipliers in Nonconvex Programming
We describe a primal-dual application of the proximal point algorithm to nonconvex minimization problems. Motivated by the work of Spingarn and more recently by the work of Kaplan and Tichatschke about the proximal point methodology in nonconvex optimization. This paper discusses some local results in two directions. The first one concerns the application of the proximal method of multipliers t...
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملIteration-complexity of a Rockafellar’s proximal method of multipliers for convex programming based on second-order approximations
This paper studies the iteration-complexity of a new primal-dual algorithm based on Rockafellar’s proximal method of multipliers (PMM) for solving smooth convex programming problems with inequality constraints. In each step, either a step of Rockafellar’s PMM for a second-order model of the problem is computed or a relaxed extragradient step is performed. The resulting algorithm is a (large-ste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Operations Research Society of Japan
سال: 1996
ISSN: 0453-4514,2188-8299
DOI: 10.15807/jorsj.39.213